
Random Behavior of Means
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Parameter Measure Statistic

𝜇 Mean of a single population ത𝑋

𝜎2 Variance of a single population 𝑆2

𝜎 Standard deviation of a single population S

𝑝 Proportion of a single population Ƹ𝑝

𝜇1 − 𝜇2 Difference in means of two populations ത𝑋1 − ത𝑋2

𝑝1 − 𝑝2 Difference in proportions of two populations Ƹ𝑝1 − Ƹ𝑝2

• To estimate the mean of a population, we could use the Sample mean ( ത𝑋).

• Is the sample mean a good estimate? 

2



 Parameter labeled, m.

 Often too large to calculate or too difficult to 
access.

 If a probability distribution can represent this 
population, then the population mean is 
considered the mean of a random variable.

 Consider estimating it with the sample mean.
Would this be a “Good” Estimate? 
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An estimation method should be both accurate and precise.

 Accurate – The method measures what it intended; 
correctly estimates the population parameter.

 Precise – If the method is repeated, the estimates are very 
consistent.

To be a good golfer, we need to be both accurate (tends to 
hit the ball near the cup) and precise (shot is repeatable, 
consistent).

An accurate and precise estimate is called an Unbiased
estimate 



 Consider the distribution of weights 
of bags of pretzels. Assume the 
population distribution of weights is 

normal with m = 16 and s = 5

 Imagine taking multiple samples 
from this population
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Impossible to obtain all the 
weights in the population

16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

7



16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

8



16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

9



16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

10



16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

11



16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

15.8 
oz

12



16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

15.8 
oz

16.8 
oz

13



16.1  
oz

15.8 
oz

16.1  
oz

14.6 
oz

15.9 
oz

16.8 
oz 16.7 

oz

15.9 
oz

15.5 
oz

16.0 
oz

18.3 
oz 17.9 

oz

14.0 
oz

16.9 
oz

14.8 
oz

15.1 
oz

15.2 
oz

15.8 
oz

16.8 
oz

15.1 
oz

19.15
3

1.158.168.15
x==

++

14



 But, how close is     to the unknown m?

 This sample mean that we just found comes 
from a distribution of sample means.

 Do you think all samples will result in the 
same sample mean? 

x
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 The value of a statistic varies in repeated 
random sampling

 Main idea: to see how trustworthy a 
procedure is, ask what would happen if we 
repeated it many times.



 The sampling distribution of a statistic is the distribution of 
all possible values taken by the statistic when all possible 
samples of a fixed size n are taken from the population. 

 It is a theoretical idea; in reality, we do not actually build it 
(though today we will simulate it).

 The sampling distribution of a statistic is the probability 
distribution of that statistic.
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 We need an estimation method that aims in the 
right direction (accurate).

 Also, we need an estimation method that if we 
repeat the process we would arrive at nearly the 
same estimate (precise).

 We measure accuracy and precision using 
simulation.
◦ We think about an estimate’s accuracy by considering 

bias (which focuses on center).
◦ We will measure an estimate’s precision with a statistic 

called the standard error (which focuses on spread).



 Create a hypothetical population
◦ Calc -> Random Data - > Normal (enter parameters and N) 

 Using the pull down menus or commands in the session window 
will only allow you to take one sample at a time.

 If we want to take multiple samples at once, press “control and L” 
to open the command line editor

 Type (or copy and paste) the following into this window

sample 5 c1 c2
sample 5 c1 c3
sample 5 c1 c4 
……..

 You can read the first command as “take a sample of 5 from c1 
and store it in c2”
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 We will take many random samples of a given size n from a 

population with mean m and standard deviation s.

 Some sample means will be above the population mean m

and some will be below, making up the sampling distribution. 

 We will begin with the normal “population” distribution 

(100,000 values) of weights with μ = 16 and σ = 5.

 Let’s simulate taking 1000 samples and graphing their means 

in Minitab (CLT Normal)
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 What does the shape of the sampling distribution 
depend on?

 What statistical value will be found at the center 
of the sampling distribution?

 How will the spread of the sampling distribution 
compare to the spread of the population 
distribution?

 Does the spread depend on a certain quantity?
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 Our population looks something like this:
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177.16=xm

999.15=xm
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177.16=xm

178.2=xs

999.15=xm

283.1=xs
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001.5=s 178.2=xs

283.1=xs 950.0=xs
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 What is the shape of the sampling distribution?
◦ Our sampling distribution looks normal.

 What statistical value will be found at the center of the 
sampling distribution?
◦ The mean of the sample means will be very close to the 

population mean.

 How will the spread of the sampling distribution compare 
to the spread of the population distribution?
◦ The spread of our sampling distribution is smaller than that of the 

population

 Does the spread depend on a certain quantity?
◦ The bigger our sample the smaller the spread of the sampling 

distribution
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 Population: m = 15.995, s = 5.001

 Sampling distributions when

◦ n = 5: 

◦ n = 15:

◦ n = 30:  

178.2 ,177.16 == xx sm

283.1 ,999.15 == xx sm

950.0 ,978.15 == xx sm

236.2
5

5
==

n

s

291.1
15

5
=

913.0
30

5
=
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 The standard error is another name for the 
spread, or standard deviation, of a sampling 
distribution

 The Standard Error for a sample mean is 
found by: 

σ

𝑛



 If our population is normal, the shape of 
our sampling distribution of the sample 
mean will be approximately normal 
regardless of sample size

 The mean of the sampling distribution is 
equal to the population mean m.

 The standard deviation of the sampling 
distribution is        , where n is the sample 
size.

n
s
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 A random sample of size n is taken from a normal 
population with mean μ and variance σ2.

 A linear function ( ҧ𝑥) of normal and independent 
random variables is itself normally distributed.

1 2

2 2 2 2
2

2

2

2

...
 has a normal distribution

...
with mean 

...
and variance 

n

X

X

X X X
X

n

n

n

n n n

m m m
m

s s s
s

ss

m

+ + +
=

+ + +
= =

+ + +
= = =
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 Consider the time between arrivals of 
vehicles at a particular intersection. 
Assume an exponential distribution with 
m = s = 16.

 Same procedure as earlier example 
(normal) 

◦ Took 1,000 samples of size 5 from the 
100,000 exponential times in Minitab.

◦ Calculated 1,000 means

◦ Graphed those means in a histogram

◦ Repeated this process using n = 15 
and n = 30.
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Time between arrivals distribution with m ≈ 16 (100,000 
values)
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002.16=s 883.6=xs

049.4=xs 877.2=xs
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 What is the shape of the sampling distribution?
◦ Our sampling distribution still looks normal, even more so as our sample 

size gets large (n=30 yields best results) 

 What statistical value will be found at the center of the sampling 
distribution?
◦ The mean of the sample means is still very close to the population mean.

 How will the spread of the sampling distribution compare to the 
spread of the population distribution?
◦ The spread of our sampling distribution is smaller than that of the 

population.  

 Does the spread depend on a certain quantity?
◦ The bigger our sample the smaller the spread of the sampling distribution 

(and the more normal it begins to look)
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 Population: m = 15.967, s = 16.002

 Sampling distributions when

◦ n = 5: 

◦ n = 15:

◦ n = 30:  

883.6 ,754.15 == xx sm

049.4 ,003.16 == xx sm

877.2 ,964.15 == xx sm

155.7
5

16
==

n

s

131.4
15

16
=

921.2
30

16
=
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 If our population is non-normal, the shape of 
our sampling distribution of the sample mean 
will be approximately normal depending on the 
sample size of each sample (we’ll use n > 30)

 The mean of the sampling distribution is equal 
to the population mean m.

 The standard deviation of the sampling 
distribution is        , where n is the sample size.

n
s
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When randomly sampling from any population 
with mean m and standard deviation s, the 
sampling distribution of ҧ𝑥 is approximately 

normal with mean = μ and s.d = 
σ

𝑛
when the 

sample size, n, is “sufficiently large”.

 Note: In general, we can assume n ≥ 30 is 
“sufficiently large”
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1.) If the rv X is normal the distribution of the sample 
means is normal no matter what sample size is taken.

If our Population ~ N(µ,σ) 

Then ത𝑋 ~ N(µ,
σ
𝑛

) for ANY n.

2.) If the rv X is non-normal, the distribution of sample 
means is approximately normal for a “sufficiently large” 
sample size (n > 30)

If our Population ~ ?(µ,σ) aka non-normal

Then ത𝑋 ~ N(µ,
σ
𝑛

) IF n > 30 



 How does all of that help us?  

 We can assume normality of the sampling 
distribution and standardize to find 
probabilities about the sample mean

n

x
Z

s

m−
=

deviation standard

)meanvalue(
 : wordsIn

−
=z



There are certain types of problems that we now can do 
assuming the CLT holds:  

 Find probabilities associated with a single individual
from a Normal Population (already know)

 Find probabilities associated with a small sample 
from a Normal Population

 Find probabilities associated with a large sample 
from a Normal Population

 Find probabilities associated with a large sample 
from a Non-Normal Population



Can’t Do (Yet):

 Find probabilities associated with a single
individual from a Non-Normal Population

 Find probabilities associated with a small
sample from a Non-Normal Population



 Suppose that a random variable X has a continuous 
uniform distribution:

 Describe the distribution of the sample mean of a 
random sample of size n = 40

( )
1 2,  4 x 6

0,     otherwise
f x

 
= 



( ) ( )
2 2

2

Distribution is normal by the CLT.

6 4
5.0

2 2

6 4 1
0.58

12 12 3

1 3 1
0.09

40 120
X

b a

b a

n

m

s

s
s

+ +
= = =

− −
= = = =

= = = =
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 An electronics company manufactures resistors 
having a mean resistance of 100 ohms and a 
standard deviation of 10 ohms.  The distribution of 
resistance is normal.  What is the probability that a 
random sample of n = 25 resistors will have an 
average resistance of less than 95 ohms?

( )

( )

10
2.0

25

95 100
95

2

2.5 0.0062

X

X

X

n

X
P X

s
s

m

s

= = =

 − − 
 =  =    

  

=  − = 0.0062 = NORMSDIST(-2.5)

A rare event at less than 1%.
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 Many times, we need to know if a sample 
seems to come from a Normal Distribution.  

 There are numerical ways to do this, but now 
we will focus on Visual Methods.  You could 
use:
◦ Histograms with overlaying Normal density curves

 Could be issues w/ sample size, bin size, etc… 

 Outliers not always obvious

◦ Normal Probability (Q-Q) plots
 Best option 



To construct a probability plot:

 Sort the data observations in ascending 
order: x(1), x(2),…, x(n).

 Pair each observation with either it’s quantile 
or it’s Z score (for normal)

 If the paired numbers form a straight line, it 
is reasonable to assume that the data follows 
the proposed distribution.
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j x (j ) (j -0.5)/10 z j

1 176 0.05 -1.64

2 183 0.15 -1.04

3 185 0.25 -0.67

4 190 0.35 -0.39

5 191 0.45 -0.13

6 192 0.55 0.13

7 201 0.65 0.39

8 205 0.75 0.67

9 214 0.85 1.04

10 220 0.95 1.64

Calculations for Constructing a 

Normal Probability Plot

A normal probability plot can be plotted on ordinary axes using z-values.  The normal 
probability scale is not used.
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 The probability plot can identify variations 
from a normal distribution shape.
◦ Light (short) tails of the distribution – more peaked.

◦ Heavy (Long) tails of the distribution – less peaked.

◦ Skewed distributions can also be identified 

 Larger samples increase the clarity of the 
conclusions reached.
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Default:

 Using High Temps Data

 Graph > Probability Plot > single > 
Choose Data
◦ Distribution button > choose distribution 

(normal here)

64

Edits:
• Distribution Button-> Data Display Tab -> 

Uncheck Show C.I.
• Scale Button-> Y-Scale-> Score



 So we can use one sample mean to find 
probabilities.  However, there is one 
problem…

 We most likely will not have knowledge of the 
population standard deviation σ, but we can 
estimate it.



 Estimate the population standard deviation s
with the sample standard deviation, s.

 s is known to be a good estimate of s.

 s is a statistic calculated from the sample 
data.



 Population standard deviation

 Sample standard deviation

( )
N

i

N

i

x −
== 1

2

m
s

( )
1

1

2

−
=

 −
=

n

i
s

n

i

xx



 There exists only one value of s for a 
population.

 Each sample one takes produces another 
different sample standard deviation, s.
◦ S has it’s own sampling distribution which we will 

discuss later

 s is an unbiased estimate of s only when we 
divide by n – 1 in the formula.
◦ We have n – 1 degrees of freedom



 Data still need to be collected randomly and 
independently

 In addition, either the population must be 
normally distributed or the sample size must 
be fairly large (n > 30).

 However, since we are estimating s with s, we 
need to introduce a new distribution to use 
for inference.



 Used when σ is unknown.

 Family of t-distributions that depend on 
degrees of freedom (n – 1).

 There is a different t-distribution curve for 
each degree of freedom.





Similarities
• Bell Shaped
• Symmetrical 
• Centered at 0



Differences
• t distribution is more spread out than z distribution
• Standard deviation of t distribution > 1
• More area in the tails of the t-distribution









Red = Normal

Blue = t



df = 5



df = 10



df = 15



df = 20



df = 30







 As the degrees of freedom increase, the t-
distribution’s shape gets closer and closer to 
a z-distribution.

 At around n = 30-40 the difference is nearly 
indistinguishable.



 Used when σ is unknown typically for small 
samples

 Most appropriate when the population we are 
sampling from is normal but can be used when it:

◦ Does not contain outliers

◦ Is not extremely skewed

 Assumptions can be eased if one collects a larger 
sample.



 The CEO of light bulbs manufacturing company 
claims that an average light bulb lasts 300 days. 
A researcher randomly selects 15 bulbs for 
testing. The sampled bulbs last an average of 
290 days, with a standard deviation of 50 days. 

 If the CEO’s claim were true, what is the 
probability that 15 randomly selected bulbs 
would have an average life of no more than 290 
days?

 What distribution should we use? Check 
assumptions: 



 We have no information about the population 
except a claimed mean 
◦ µ= 300

 We have more information about the sample: 
◦ n=15

◦ ҧ𝑥 = 290
◦ s = 50

 We do not know σ or have n>30, CLT does not 
hold
◦ Must use the T distribution  



 Find P(X ≤ 290) form the t distribution w/ 
df=15-1=14 

ҧ𝑥−µ
𝑠

𝑛

=
290−300

50

15

= −0.7746

 From the T table w/ df=14 we find:
◦ P(T ≤ -0.7746) = 0.2257



 Important Discrete Distributions:
◦ Poisson - The number of events (x) likely to happen 

on a fixed interval with rate λ

◦ Binomial - Probability of x successes in a fixed 
number of trials (n) with (p) probability of success 

 We know how to solve these, but what if our 
numbers get really big? 



 In a digital communication channel, assume that the 
number of bits received in error can be modeled by a 
binomial random variable.  

 The probability that a bit is received in error is 0.00001 
(10-5).  If 16 million bits are transmitted, what is the 
probability that 150 or fewer errors occur?  

 Let X denote the number of errors. Can we solve this? 

 Technically, yes, but too hard manually.  

( ) ( ) ( )
150

16000000
16000000 5 5

0

150 10 1 10
x x

x

x

P X C
−

− −

=

 = −
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 So what if our numbers get really big? 
◦ We can approximate these distributions with the 

Normal 
◦ We will focus on this with the binomial, but it can 

also be done in a similar manner with the Poisson

 Let’s visualize this in Minitab

 If n is large, and p is not too close to 0 or 1, 
the binomial distribution can be 
approximated by the normal distribution.



 Recall the Binomial Mean and SD.

 Then if we can say :

 A common rule of thumb, we will use the approximation 
for values of n and p that satisfy both:

np > 5 and n(1 – p) > 5

93

( )( )pnpnpNX −1, approx. is 

( )

( )pnp

pnp

np

−=

−=

=

1
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s

m



 Suppose the probability that on entering college, 
a student will graduate in 4 years is 0.77. An 
academic advisor is advising 12 freshmen.

 Would the approximation work?

12(0.77) = 9.24 and 12(1 – 0.77) = 2.76

 We do not meet the criteria.

 Let’s see what that distribution looks like…
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 Now would the approximation work?

45(0.77) = 34.65 and 45(1 – 0.77) = 10.35

 Both calculations are greater than 10.

 Thus, this binomial distribution can be 
approximated with the normal distribution.

10
0



 Start with X ~ B(45, 0.77)

 We meet our criteria

 Then calculate the mean and standard deviation 
of this binomial distribution

 Thus our approximate distribution is: 

X is  approx. N(34.65, 2.823)

823.2)23.0)(77.0(45)1(

  34.65 )77.0(45

==−=

===

pnp

np

s

m

10
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 From this SRS of 45, what is the probability 
that 30 or less graduate?

 Exact Binomial probability:
P(X < 30) = 0.075

10
2



 Consider the normal approximation:

N(34.65, 2.823)

 P(X < 30)

 P(X < 30) = 0.0495

65.1
823.2

65.3430
−=

−
=z

10
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 The normal approximation is not perfect.

 A continuity correction can be made to 
improve the approximation.

 Adding 0.5 to our x value utilizes what we 
call the continuity correction 

10
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 Let X be a Poisson RV w/ mean = λ = VAR  

 Then we can apply similar ideas and use: 

 Typically works when :



 Assume that the number of asbestos particles in a square 
meter of dust on a surface follows a Poisson distribution 
with a mean of 1000.  If a square meter of dust is analyzed, 
what is the probability that 950 or fewer particles are found?

( )

( )

( )

1000950

0

1000
950      ... too hard manually!

!

950.5 1000
950.5

1000

1.57 0.058

x

x

e
P X

x

P X P Z

P Z

−

=

 =

− 
  =  

 

=  − =


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